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A study is made of the gap exponents for percolation processes with the triangle 
condition in the subcritical region. It is show that the gaps are given by A t = 2 
for t = 2 , 3  ..... Scaling theory predicts that Pp(ICo[>~S(p))~_(p~. p) and 
Ep(1/ICot; ICol ~> S(p))~-(pc-p)  3, where S(p) is the typical cluster size. It is 
found that (pc_p)<pp(]Co>~S(p)l-~:)~(pc_p)l z~ and (pc-p)3~ 
Ep(1/ICol; ICol/> S(p) ~ ~)) < (pc- p)3-4,n. 

KEY W O R D S :  Percolation; triangle condition; gap exponents; free energy. 

1. I N T R O D U C T I O N  

Let each site in Z a, d>~ 2, be independently occupied or unoccupied with 
probabi l i typ  or 1 - p, respectively. We say that x is connected to y if and 
only if there exists a sequence of occupied sites Xo = x, Xl, x2,..., xn = y such 
that each pair xixi+~ is nearest neighbor. We denote {x~Za:  0--+ x} the 
cluster of sites connected to 0. Let X = t h e  number of points x that are 
connected to 0 and also let Pn(P)= P p ( X =  n). It is our main objective in 
percolation theory to study the distribution of the clusters near 

p c = i n f { p ~  [0, 1]: P p ( X =  o ( 3 ) > 0 }  

We denote Poo(P)- Pp(X= o(3 ) and call it the percolation probability. It is 
known that Pc e (0, 1) if the dimension d>~ 2. To study this we first look at 
the behavior of the moments 

Ep(X';X<oo)= ~ n'P~(p) for t = 1 , 2 , 3  .... 
n ~ 0  

1Center for Stochastic Processes, University of North Carolina at Chapel Hill, North 
Carolina. 

235 

0022-4715/87/1000-0235505.00/0 �9 1987 Plenum Publishing Corporation 



236 Nguyen 

the percolation probability 

P + ( p ) =  1 -  ~ P~(p) 
n = O  

and the free energy 

1 p,(p) 
n = l  F/ 

as the site density p approaches Pc. It was shown recently by Aizenman 
and Barsky (~) that Ep(X) < oo if and only if p < Pc. Then one can easily see 
that for p < Pc the moments Ep(X') are the same as the Ep(Xt; X< oo). It is 
clear that Ep(Xt), t = 1, 2,..., are increasing with respect to p. In fact, they 
tend to ~ if P'[Pc as a consequence of ( la)  of the following theorem: 

T h e o r e m  1 (Aizenman and Newman(2)). 
sites in the cluster containing 0. Then we have 

d 
Ep( X) <~ 2dE2p( X) 

Ep(X')<,B,[Ep(X)] 2' 1 

Let X be the number of 

(la) 

( lb)  

where B , =  ( 2 t -  1 ) ( 2 t -  3 ) - - . 3 . 1  and t =  l, 2, 3,.... 

It is widely believed that the subscritical behavior of any percolation 
model that satisfies the triangle condition 

(V) ~ Pp,(O~x) Ppc(X~ y)Pp,.(y---*O)<oo 
x ,  12 

should be similar to the subcritical behavior of the percolation model on 
the Bethe lattice. The critical behavior of the percolation of the Bethe lat- 
tice is well known. In fact, the rates of decay of the moments of the finite 
cluster size Ep(Xt), of the percolation probability P~(p), and of the 
"singular part" of the free energy fsing(P) are all known. To describe the 
rate of decay of a quantity g(p) about Pc, we introduce the definition of 
the critical exponent 2 as in 

g(p)~--(p~--p)~ for p < p c  

o r  

g ( p )  ~- ( p  - p,.)~ for p > p c  
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if there are positive constants K~, K 2 > 0 so that 

K~(p~ - p)~ <~ g (p )  <~ K2(pc - p)~ 

or similarly 

K~(p - pc) ~ <~ g(p)  <~ Kz (p  - p~.)~ 

We now define the critical exponents ~,/3, 7, and At, respectively, for the 
"singular part" of the free energy, the percolation probability, the mean of 
the finite cluster size, and the gap moments  as follows: 

f~ing(P) -~ ( P , -  p)2 

P ~ ( p )  ~- ( p - - p ~ ) ~  

G(x)  _~ (p ,  - p)  ~ 

E ~ ( x  t+ ~) /E(x ' )  ~_ (p~ - p)-~,+~ 

An analysis of percolation on the Bethe lattice (e.g., Durrett  (4)) reveals that 
= -  1, f i=  1, 7 = 1, and A t + , = 2  for all t =  1, 2, 3 ..... In this paper we 

study the subcritical vehavior of the percolation models in Z d satisfying 
the triangle condition ( V )  by looking at the critical exponents of the 
mentioned quantities. In Section 2 we discuss the influence of the triangle 
condition on the gap exponents and show A t = 2. In Section 3 we discuss 
the exponents a and fl and give a proof  of a proposit ion concerning these 
exponents. 

2. T R I A N G L E  C O N D I T I O N  A N D  G A P  E X P O N E N T S  

It can be easily seen from Theorem 1 that 7 ~> 1, At ~< 27 and that 7 = 1, 
A, = 2 are saturated values for percolation processes. To see how A, = 27 
can be obtained, we need to compare Ep(X  t) and E2pt-~(X). We observe 
that 

EAX)= ~ ~t+~(Xo, X~ ..... x,) 
Xl,...,xt 

and 

where 

/~ t - ' (X)=B;1  ~ Tt+~(Xo, Xj ..... x , )  
Xl,...,xt 

~,+ l(Xo, xl,..., x , )  = Pp(xo ~ x , ,  x2,..., xt) 

t t  + l (xo '  x1 ..... xt )  = 2 '  Z H T2(Z, Z') 
G Yl,...,Yt-I (z,z')~E(G) 
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[in the definition of T,+ 1 the sum Z~  is over all the connected tree graphs 
G with external vertices {Xo, xl,..., x~}, internal vertices {Yl,..., Y,-1 }, and 
the set of edges E(G)l. Thus, to compare Ep(X t) and E2p'-~(X) we may 
need to compare r t+l  and T,+~. As a matter of fact, Aizenman and 
Newman (2) obtained the result ( lb)  by first deriving their tree graph 
inequality that 

"/St+ I(X0, Xl, . . .  , Xt)~ T,+ I(X0, X 1 ,..., Xt) 

and then summing over x l ,  x2 ..... x~ on both sides of the inequality. They 
further conjectured that in systems satisfying the (V )  condition, there is 
also a lower bound of the form 

(*) 72t+1(Xo,...,Xt)~(~ t 1Tt+l(X 0 ..... xt) fo r some  c5>0 

If ( , )  holds, then we can have the other bound of (lb):  
Ep(Xt) ~ (~t IE2t l ( X  ) 

by simply summing over xl ..... xt on both sides of (*). Therefore, the values 
At=27  are implied by the tree structure of the higher connectivity 
functions T,+I,  provided the vertex strengths Gt=r,/T, are bounded 
below. Moreover, the values A t = 2 would be obtained if 7 = 1. It is already 
known that the value ~,= 1 can be attained for systems with the (V)  
condition, as shown in the following result. 

T h e o r e m  2 (Aizenman and Newman(Z)). If the triangle condition 
(V)  holds, then 36 > 0 such that 

d yp E (x) >16E (x) (2) 

Indeed, from the two theorems above we can easily show that 
3K1, K2 > 0 such that 

KI(p,.- p)-i <~ Ep(X) <~ KR(pc- P)-~ (3) 

While we do not know how to prove the conjecture (*), we can still 
deduce the main conclusion on the gap exponents, A t=  2, from the tree 
structure of just the three-point function (which is the mechanism behind 
Theorem 2) or in fact just from inequality (2), by applying the following 
general result. 

Theorem 3 (Durrett and Nguyen(5)). There exists a positive 
constant K 3 such  that 

__ Ep(X 2) ~ 1 d 2 
S( P ) -- Ep(~ ) ~I K3 ~ [--~p Ep( X) ] (4)  
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To see why by above theorem implies A2 = 2, we apply (2) and (3) in 
(4) to obtain 

S ( p )  >/K 3 (~2E2(X) t> K 3 c52I~11(Pc - p)  2 = K4(p  c _ p)  2 

On the other hand, from ( lb)  we have 

S ( p )  <~ B2 [E(X)]  2 ~< BzK~2(pc - p ) - 2  = Ks(Pc -- P) 2 

This shows that A2 = 2. We will show in the next section that A t =  2 for all 
t = 2, 3, 4,..., by applying inductively (lb).  The S ( p )  defined in Theorem 3 is 
known as the typical cluster size and plays a very important  role in the 
scaling theory for percolation, as we will see in the discussion about  ~ and 
/~ in the next section. 

3. D I S C U S S I O N  O N  a A N D  13 

In this section we discuss ~ and/~ and show a proposit ion concerning 
these exponents. In the course of doing this, we prove that A , = 2  for 
t = 2, 3 ..... Note  that if we think of A 1 as 7 +/~ and A 0 as 2 - ~ - / ~  and if we 
believe that the gaps are cons t an t~ . e . ,  A t = A  for t = 0 ,  1, 2,.. .--then we 
would expect that/~ = 1 and ~ = - 1 for systems with the triangle condition. 
In general, i t  is known from Chayes and Chayes (9) that /~< 1 and from 
Aizenman and Barsky (I) t h a t / ~ ( 6 - 1 )  ~> 1, where the critical exponent 6 is 
defined as in 

Ppc(X>~ n) ~- n -lIe' 

According to Barsky, (3) 6 = 2 ,  provided the ( V )  condition holds. This 
amounts  to/~ = 1. At this point, as far as we know, the question of whether 

= - 1  is still open. Further, we do not know whether the free energy is 
singular at Pc. Physicists have suggested that the singular part  of the free 
energy should come from the tail 

f A p ) =  y '  n - l P , , ( p )  
n >~ S ( p )  

where S ( p )  is the typical cluster size (see, e.g., Essam (6) or Stauffer(8)). They 
introduce scaling theory, which suggests 

(**) P , , ( p ) ~ n  1 / ~ e x p [ - - n / S ( p ) l  for P < P c  

822/49/1-2-16 
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Assuming (**), we see that for p < Pc 

Also, 

f~(p)-  Y" n 1pn(p) 
n >1 S(p) 

"~ ~ n-1/a- lexp[-nlS(p)]  
n = S(p) 

.~S(p)-./a+l) x-1/a-I e-Xdx 
q 

= const x S (p )< l / a+  1) 

P>~s(P)- ~ P.(P) 
n>~S(p) 

"~ ~ n-1/a exp[-nlS(p)]  
n = S(p) 

/ ~S(p)  -~/a x ~/ae Xdx 

= const x S(p) 1/~ 

This, together with the (V)  condition, shows that fs(P) ~- ( P c - P )  3 and 
P~s(P) ~- (Pc-  P), since we already know that 6 = 2 and 
S(p)~_(pc-p)  -2. In the following proposition we show that, even 
without the assumption (**), this is "almost" correct. 

P r o p o s i t i o n .  Assume that the triangle condition (V )  holds. Then, 
given a positive integer t, there exists a neighborhood N(pc)-(pc(t), Pc) 
such that 

At(Pc--p) l 2/') Pp(X>~S(p)l-~/')>~ A,(pc-  p) (5) 

and 
C,(pc-p)3-4/'>~Ep(1/X;X>~S(p)l-1/')>.Ct(pc-p) 3 (6) 

where A,, .4,, C,, and C, are some positive constants depending on t. 

Note that as t T m, S 1 i/,(p)~ S(p); hence, by dominated conver- 
gence 

P p ( X  > S ( p )  i -  i / t)  ___+ P p ( X  > S ( p )  ) 

Ep(1/X; X>~ S(p) l-  1/,) __+ Ep(1/X; X>~ S(p)) 
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Since the critical exponents of the two quantities in the proposition tend to 
1 and 3, we expect that the critical exponents of their limits should be the 
limiting values above and we think of them as the representatives of the 
percolation probability and the singular part of the free energy for the case 
o f p  <p~.. 

We start the proof with the following easy observation. 

Lemma 1. 

ProoL 

The following inequality holds: 

E(X') > E ( X  '-1) 

E(X'-~)~ E(X ~-2) 

This is an easy consequence of the Cauchy-Schwartz 1emma: 

E2(X t 1)--=E2(Xt/2Xt/2 I)<~E(X')E(X' 2) 

Thus by induction we have 

Ep(X') Ep(X t - l )  >ER(X 2) 
~ ) ~ - _ ( x ,_~ ) >~ p  . . .  ,,, EAx) = S ( p )  Ep(X t 

Hence 

(7) 

EAX')> Ep(X) S(p)' 1 (8) 

On the other hand, from (lb) we obtain 

Ep(X') ) ~< B, [E~(X)] 2'-1 
Ep(X ' - I  ~ ~  

Bt [K2(p~ - p) -112 , -  ~ 
<~ ~ P) 2],_2<~t(pc_p ) 2 (9) 

Kl(pc -- P)- [K4(Pc - 

where B, is some positive constant depending on t. Expressions (7) and (9) 
show that A, = 2 for all t = 2, 3, 4 ..... By a similar reasoning, we can show 

that there exist positive constants ~7,, ~,  so that 

At(pc_p) 2 t + l  <~Ep(Xt)<~t(p_p)-2,+l (10) 

Now we turn our attention to the proof of (5). Half of (5) is an easy 
consequence of the Chebyshev inequality: 

Pp(X>~SI-'/'(p))~Ep(X)/S ~ '/ '(p)~K2(Pc--p) X[K4~(pc-p)211-1/t 

= K2K41 +2/t(p,. __ p)1-2/t 
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To show the other half, fix an integer t. We have 

S(p) , - l~[Ks(pc_p) -2] t - l=K~ l ( p ~ _ p )  2t+z~�89 2 , + 1  

if p is close enough to Pc inside the neighborhood N(p~) = (p~(t), p~). If so, 
then by (10) 

S(p)'-' ~ ~E~(x') 

Hence, we have, for peN(pc), 

Pp(X>~S(p) 1 ln)=Pp(Xt>~S(p)t 1)>~Pp(X'>~�89 

1 2 t 

-4~p~ilg'2[Xt]) + Var(X') 

(by the one-sided Markov inequality (71) 

1 E2(X ') 1 ~2(p,_p)-4t+2 
~>~ ~>~ = -~,(P,.- P) 

Ep(X2t)  ~22t(Pc-- P) 4 t + 1  

where A, = • ~- 2 This completes the proof of (5). The proof of (6) can 4*~t *=2t " 

be proved easily from (5) as follows: " 

y~ ! p,,(p) < 1 1/,) 
n>~g(P) 1-1/, S ( p ) I  lit Pp(X>~ S(p) t 

<~At(pc_ p)l-Z/,[K41(pc_ p)Z]l l/, 

= C , ( p  c -  p ) 3 - 4 / t  

where C, = A,K 41 + 1/,; and by Cauchy Schwartz 

~" 1pn(p)>P2p(X>S(p)l-'/t) P z ( x ) S ( p )  1-1/') 
n>~ s(,) 1 i,t n ~ Z n  >1 s(-'~p)l-l/,--~Pn--(PZ >/ Ep(X) 

22(pc_ p)2 
>~ 

KI(Pc _p) - I  
= C , ( p c -  p)3 

where C, = ~2 K7 i. Q.E.D. 
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